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1. Introduction

Let F be a differential field, t = t1, . . . , tm a finite set of differential indeterminates 
over F and G ⊂ F〈t〉 a differential field extension of F . The generalized differential 
Lüroth’s Theorem states that if the differential transcendence degree of G over F is 1, 
then there exists v ∈ G such that G = F〈v〉. The case m = 1 is the classical differential 
Lüroth’s Theorem.

This theorem is a differential generalization of similar results valid in the algebraic
framework: the classical algebraic result (i.e. for m = 1) is established by Lüroth in 1876 
(see [16]). Its extension for an arbitrary integer m in the case of characteristic 0 is given 
by Gordan ten years later in [7] and in 1951, Igusa [10] shows the generalization for 
arbitrary characteristic.

In the differential setting, the first version of the classical differential Lüroth’s The-
orem is given by Ritt in 1932 (see [17]) for the field of complex meromorphic functions 
and extended by Kolchin in [12] and [13] for any differential base field of characteristic 0. 
Moreover, in his book [11] Kolchin points out that the arguments given by Ritt and 
himself could be adapted in order to prove the generalized differential Lüroth’s Theorem 
for an arbitrary integer m (see [11, Ch. IV, Section 7, Exercise 2]).

The present paper deals with quantitative aspects of the generalized differential 
Lüroth’s Theorem. More precisely, suppose that the intermediate field G is finitely gen-
erated over F by differential nonconstant rational functions α1, . . . , αn ∈ F〈t〉 whose 
total degrees are bounded by an integer d (the total degree of a rational function is de-
fined as the maximum of the total degrees of the numerator and the denominator in an 
irreducible representation). Let e be an upper bound for the order of α1, . . . , αn, which 
for technical reasons we assume to be at least 1. We are interested in the determination 
of a priori bounds for the order and the degree of a Lüroth generator v in terms of the 
parameters m, n, d, e and in the design of an effective method to find v.

An elementary calculation shows that the order of any Lüroth generator is bounded 
by the minimum of the orders of the generators αj (see for instance [3, Proposition 5]).

Obtaining an upper bound for the degrees of the polynomials describing the Lüroth 
generator is a more delicate task. The first results for the case m = 1 are given in [3]
and [4]. In the present paper, we get new bounds for arbitrary m by suitably adapting 
and extending the main arguments in our previous paper [3]: in Theorem 17 below, we 
show that any Lüroth generator v of G over F has total degree bounded by

min
{(

(d + 1)
(
(n + μ− 1)d + 1

))min{m,2}e+1
, (d + 1)n(min{m,n}e+1)},

where μ is the minimal order of any variable appearing in α1, . . . , αn. Moreover, if the 
ground differential field F contains a nonconstant element, we obtain the better bound

min
{(

(d + 1)((n− 1)d + 1)
)min{m,2}e+1

, (d + 1)n(min{m,n}e+1)}.
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These bounds lead to new bounds also for the case m = 1 (see Corollary 18). In this 
special case our estimations improve those of [3] and [4], except when d is large enough 
with respect to the other parameters (see Section 4.4 for a more detailed comparison 
with previous results).

Independently of these degree bounds, our approach also allows us to deduce an 
effective method to decide if a differential extension G ⊂ F〈t〉, finitely generated over F , 
has differential transcendence degree 1 and, in the affirmative case, compute a Lüroth 
generator (see Section 5). Previous algorithms for the computation of a Lüroth generator 
in the classical differential case can be found in [5] and [3].

The paper is organized as follows: in Section 2 we introduce basic definitions and 
notations from standard differential algebra. Section 3 is devoted to introducing the 
differential generalized Lüroth’s Theorem and the approach given by Kolchin. The core 
of the paper is Section 4, where the degree upper bounds for a Lüroth generator are 
discussed. In Section 5 an effective procedure to compute a Lüroth generator and an 
example illustrating our results are presented.

2. Preliminaries

In this section we introduce the notation we will use throughout the paper and recall 
some definitions and results from differential algebra.

2.1. Basic definitions and notation

A differential field (F , Δ) is a field F with a set of derivations Δ = {δi}i∈I , δi : F → F . 
In this paper, all differential fields are ordinary differential fields; that is to say, they are 
equipped with only one derivation δ; for instance, F = Q, R or C with δ = 0, or F = Q(t)
with the usual derivation δ(t) = 1. For this reason, we will simply write differential field
(instead of ordinary differential field).

Let (F , δ) be a differential field of characteristic 0.
The ring of differential polynomials in α indeterminates z := z1, . . . , zα, which is 

denoted by F{z1, . . . , zα} or simply F{z}, is defined as the commutative polynomial ring 
F [z(p)

j , 1 ≤ j ≤ α, p ∈ N0] (in infinitely many indeterminates), extending the derivation 

of F by letting δ(z(i)
j ) = z

(i+1)
j , that is, z(i)

j stands for the ith derivative of zj (as 
customarily, the first derivatives are also denoted by żj). We write z(p) := z

(p)
1 , . . . , z(p)

α

and z[p] := z, z(1), . . . , z(p) for every p ∈ N0.
The fraction field of F{z} is a differential field, denoted by F〈z〉, with the derivation 

obtained by extending the derivation δ to the quotients in the usual way. For g ∈ F{z}, 
the order of g with respect to zj is ord(g, zj) := max{i ∈ N0 : z(i)

j appears in g}. If a 
variable zj does not occur in g, we set ord(g, zj) := −∞. The order of g is ord(g) :=
max{ord(g, zj) : 1 ≤ j ≤ α}. This notion of order extends naturally to F〈z〉 by taking the 
maximum of the orders of the numerator and the denominator in a reduced representation 
of the rational fraction.
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Given differential polynomials H := h1, . . . , hβ ∈ F{z}, we write [H] to denote the 
smallest differential ideal of F{z} containing H (i.e. the smallest ideal containing the 
polynomials H and all their derivatives of arbitrary order). The minimum radical dif-
ferential ideal of F{z} containing H is denoted by {H}. For every i ∈ N, we write 
H(i) := h

(i)
1 , . . . , h(i)

β and H [i] := H, H(1), . . . , H(i).
A differential field extension G/F consists of two differential fields (F , δF ) and (G, δG)

such that F ⊆ G and δF is the restriction to F of δG . Given a subset Σ ⊂ G, F〈Σ〉
denotes the minimal differential subfield of G containing F and Σ.

A family of elements (ξi)i∈I in G is said to be differentially algebraically independent
over F (or a family of differential indeterminates over F) if the family of its derivatives 
{ξ(p)

i : i ∈ I, p ∈ N0} is algebraically independent over F ; otherwise, it is said to be 
differentially algebraically dependent over F . In the special case in which Σ consists of a 
single element ξ ∈ G, then ξ is said to be, correspondingly, differentially transcendental
or differentially algebraic. If every ξ ∈ G is differentially algebraic over F , we say that 
G/F is differentially algebraic over F .

A differential transcendence basis of a differential field extension G/F is a minimal 
subset Σ ⊂ G such that the differential field extension G/F〈Σ〉 is differentially algebraic. 
All the differential transcendence bases of a differential field extension have the same car-
dinality (see [11, Ch. II, Sec. 9, Theorem 4]), which is called its differential transcendence 
degree.

2.2. Differential polynomials and ideals

Here we recall some definitions and properties concerning differential polynomials and 
differential ideals.

A ranking on a finite family of differential indeterminates z := z1, . . . , zα is a total 
order ≺ in the set Θ(z) := {z(l)

i : l ∈ N0} satisfying u ≺ δ(u), for every u ∈ Θ(z), and 
δ(u) ≺ δ(v) if u ≺ v, for all u, v ∈ Θ(z). A ranking on z is an orderly ranking if z(r)

i ≺ z
(s)
j

whenever r < s, and it is an elimination ranking with z1 ≺ z2 ≺ · · · ≺ zα if z(r)
i ≺ z

(s)
j

whenever i < j. If w and z are two disjoint subsets of a set of differential indeterminates 
and ≺w and ≺z are rankings on w and z respectively, the induced block elimination 
ranking with w � z is the ranking on w, z defined by the conditions that any element of 
Θ(w) is smaller than any element of Θ(z) and two elements of Θ(w) (respectively Θ(z)) 
are ordered according to ≺w (respectively ≺z).

Assume that a ranking on z is fixed. Let g ∈ F{z} \ F . The leader of g, denoted by 
�(g), is the greatest element of Θ(z) appearing in g. If the polynomial g is considered 
as a polynomial in the variable �(g), its leading coefficient, denoted by Ig, is called the 
initial of g, and Sg := ∂g/∂�(g) is the separant of g.

From a given ranking on z, a comparative rank can be defined in the whole differential 
polynomial ring F{z} as follows:

• Every element of F has lower rank than every element of F{z} \ F .
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• If A, B ∈ F{z} \ F , and if either �(A) ≺ �(B), or �(A) = �(B) and deg�(A)(A) <
deg�(B)(B), then A has lower rank than B.

• Two elements of F{z} that either are both in F or have the same leader and the 
same degree in that leader have the same rank.

We will also use some elementary facts of the well-known theory of characteristic sets. 
For the definitions and basic properties, we refer the reader to [11, Ch. I, §8–10].

Every radical differential ideal {H} of F{z} has a unique representation as a finite 
irredundant intersection of prime differential ideals, which are called the essential prime 
divisors of {H} (see [18, Ch. II, §16–17]). For an algebraically irreducible differential 
polynomial g in F{z}, there is only one essential prime divisor of {g}, which will be 
denoted pF (g), that does not contain any separant of g; this prime differential ideal is 
called the general component of g in F{z} (see [11, Ch. IV, Sect. 6]).

Let P be a prime differential ideal of F{z}. The differential dimension of P, de-
noted by diffdim(P), is the differential transcendence degree of the extension F ↪→
Frac(F{z}/P) (where Frac denotes the fraction field). The differential Hilbert–Kolchin 
function of P with respect to F is the function HP,F : N0 → N0 defined as:

HP,F (i) := the (algebraic) transcendence degree of
Frac(F [z[i]]/(P ∩ F [z[i]])) over F .

For i sufficiently large, this function equals the linear function

diffdim(P)(i + 1) + ord(P),

where ord(P) ∈ N0 is called the order of P ([11, Ch. II, Sec. 12, Theorem 6]). The 
minimum i from which this equality holds is the Hilbert–Kolchin regularity of P.

Let F be a finite set of differential polynomials contained in P, we say that F is 
quasi-regular at P if, for every k ∈ N0, and every upper order bound e, the Jacobian 
matrix of the polynomials F, Ḟ , . . . , F (k) with respect to the variables z[e+k] has full row 
rank over the fraction field of F{z}/P. Observe that this condition is independent of the 
choice of the upper bound e for the order, since for e > ord(F ) the partial derivatives of 
F (k) with respect to z[e+k] are zero.

3. Differential Lüroth’s Theorem

In [17, Chapter VIII] (see also [18] and [11]), the classical Lüroth’s Theorem for 
transcendental field extensions is generalized to the differential algebra framework:

Theorem 1 (Differential Lüroth’s Theorem). Let F be an ordinary differential field of 
characteristic 0 and let u be differentially transcendental over F . Let G be a differential 
field such that F ⊂ G ⊂ F〈u〉. Then, there is an element v ∈ G such that G = F〈v〉.
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The following generalization of this result is proposed in [11, Ch. IV, Sect. 7, Exer-
cise 2.b)]:

Theorem 2 (Generalized differential Lüroth’s Theorem). Let F be an ordinary differential 
field of characteristic 0 and let t = t1, . . . , tm be differentially algebraically independent 
over F . Let G be a differential field such that F ⊂ G ⊂ F〈t〉 and the differential tran-
scendence degree of G/F is 1. Then, there is an element v ∈ G such that G = F〈v〉.

This paper is concerned with effective aspects of this result. More precisely: for n > 1, 
let be given differential polynomials P1, . . . , Pn, Q1, . . . , Qn ∈ F{t}, with Pj/Qj /∈ F
and Pj , Qj relatively prime polynomials for every 1 ≤ j ≤ n, such that

G := F〈P1(t)/Q1(t), . . . , Pn(t)/Qn(t)〉

is a differential subextension of F〈t〉/F with differential transcendence degree over F
equal to 1. We are interested in the study of a priori upper bounds for the orders 
and degrees of a pair of differential polynomials P, Q ∈ F{t} such that Q ≡ 0 and 
G = F〈P (t)/Q(t)〉. In addition, we want to show an effective procedure to determine 
whether the given differential field extension G/F has differential transcendence degree 
equal to 1 and, if this is the case, to compute a Lüroth generator v = P (t)/Q(t) of G/F .

As in the univariate case of the Differential Lüroth’s Theorem, an optimal estimate 
for the order of the polynomials P and Q can be obtained straightforwardly (see for 
instance [3, Proposition 5]):

Proposition 3. Under the previous assumptions and notation, any element v ∈ G such 
that G = F〈v〉 satisfies ord(v) ≤ min{ord(Pj/Qj) : 1 ≤ j ≤ n}.

The problem of estimating the degrees requires a more careful analysis that we will 
do in the subsequent sections of the paper.

3.1. Kolchin’s approach

We start by sketching a proof of Theorem 2 following the approach suggested in [11, 
Ch. IV, Sect. 7, Exercise 2].

Let y = y1, . . . , ym be new differential indeterminates over the field F〈t〉 and consider 
the differential ideal Ξ of all differential polynomials in G{y} vanishing when evaluated 
at t = t1, . . . , tm:

Ξ := {A ∈ G{y} such that A(t) = 0}, (1)

that is, the kernel of the map of differential rings



JID:YJABR AID:16602 /FLA [m1L; v1.233; Prn:12/03/2018; 10:20] P.7 (1-24)
L. D’Alfonso et al. / Journal of Algebra ••• (••••) •••–••• 7
φ : G{y1, . . . , ym} → F〈t1, . . . , tm〉
yi �→ ti for 1 ≤ i ≤ m

c �→ c for c ∈ G.

Since the fraction field of the image of this map is F〈t〉 and the differential transcendence 
degree of F〈t〉/G equals m −1, it follows that Ξ is a prime differential ideal of differential 
dimension m − 1. By [11, Ch. IV, Proposition 4], there is an irreducible polynomial 
A ∈ G{y} of order ε := ord(Ξ) such that Ξ = pG(A), that is, it is the general component 
of the differential ideal [A]. Moreover, if we consider an orderly ranking in the variables y, 
then A is a polynomial of minimal rank among all the polynomials in Ξ.

We may assume that some coefficient of A equals 1. Note that not every coefficient of 
A lies in F , since t is differentially algebraically independent over F .

Multiplying A ∈ G{y} ⊂ F〈t〉{y} by the lowest common multiple of the denominators 
of its coefficients, we obtain a differential polynomial B ∈ F{t, y} with no factor in F{t}
and ordy(B) = ord(A) = ε. It can be seen that B is a square-free polynomial such that 
all its irreducible factors have order ε in the variables y and involve the variables t.

Let b1(t), b2(t) be two non-zero coefficients of B (considered as a polynomial in 
F〈t〉{y}) such that b1(t)/b2(t) /∈ F . Then, v := b1(t)/b2(t) ∈ G, since it is the quo-
tient of the corresponding coefficients of A ∈ G{y} (recall that B is a multiple of A by 
a polynomial in F{t}).

Claim. The element v is a Lüroth generator for G/F .

Write v = H(t)/K(t), with H, K ∈ F{t} relatively prime polynomials. Note that 
vK(y) − H(y) ∈ Ξ, so its order is at least ε = ord(A). Let ρ = ordt(B). Since 
ord(H), ord(K) ≤ ordt(B), it follows that ε ≤ ρ.

Consider the differential polynomial

Υ(t,y) = H(t)K(y) −K(t)H(y) ∈ F{t,y}.

By looking at the irreducible factors of B ∈ F{t, y} successively by decreasing order 
in the variables t, it is not difficult to see that each of them divides Υ. Taking into 
account that degt(B) ≥ deg(H), deg(K), it follows that Υ is a multiple of B by a factor 
C(y) ∈ F{y}. By symmetry, we deduce that C(t) divides Υ and so, it also divides 
B(t, y), which implies that C is constant. We conclude that ρ = ε and

H(t)K(y) −K(t)H(y) = aB(t,y), a ∈ F ,

and so,

vK(y) −H(y) = αA(y), α ∈ G. (2)
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The claim follows now easily by showing that every θ = Hθ(t)/Kθ(t) ∈ G remains 
fixed by any isomorphism of F〈t〉 relative to F〈v〉, which is a consequence of the fact 
that θKθ(y) −Hθ(y) ∈ Ξ = pG(A) and identity (2).

3.2. An alternative characterization of a Lüroth generator

Under the previous assumptions, consider the map of differential algebras defined by

ψ : F{x1, . . . , xn, y1, . . . , ym} → F{P1(t)/Q1(t), . . . , Pn(t)/Qn(t), t}
xj �→ Pj(t)/Qj(t)
yi �→ ti

(3)

If P ⊂ F{x, y} is the kernel of the morphism ψ, we have an isomorphism

F{P1(t)/Q1(t), . . . , Pn(t)/Qn(t), t} � F{x,y}/P.

This implies that P is a prime differential ideal and the fraction field of F{x, y}/P is 
isomorphic to F〈t〉. In addition, the previous isomorphism gives an inclusion

F{P1(t)/Q1(t), . . . , Pn(t)/Qn(t)} ↪→ F{x,y}/P,

and the inclusion induced from this map in the fraction fields leads to the original 
extension G = F〈P1(t)/Q1(t), . . . , Pn(t)/Qn(t)〉 ↪→ F〈t〉.

Let Ξ be the differential ideal of G{y} introduced in (1) and fix an orderly ranking in 
the variables y.

If A ∈ G{y} is a non-zero differential polynomial in Ξ, multiplying it by an ade-
quate element in F{P1(t)/Q1(t), . . . , Pn(t)/Qn(t)}, we obtain a differential polynomial 
in F{P1(t)/Q1(t), . . . , Pn(t)/Qn(t)}{y}, with the same rank in y as A. Taking a rep-
resentative (with respect to ψ) in F{x} for each of its coefficients yields a differential 
polynomial Â ∈ F{x, y}, with the same rank in y as A, such that Â(x, y) ∈ P.

Conversely, given a differential polynomial M ∈ F{x, y} such that M ∈ P and not 
every coefficient of M as a polynomial in F{x}{y} lies in P ∩ F{x}, the differential 
polynomial

M̃(y) := M(P1(t)/Q1(t), . . . , Pn(t)/Qn(t),y) ∈ G{y} (4)

is not the zero polynomial, vanishes when evaluating y = t and has a rank in y no higher 
than that of M .

We conclude that if M ∈ F{x, y} is a differential polynomial with the lowest rank in 
y among all the differential polynomials as above, the associated differential polynomial 
M̃(y) is a multiple by a factor in G of a polynomial A ∈ G{y} such that Ξ = pG(A). 
Therefore, as shown in the previous section, a Lüroth generator of G/F can be obtained 
as the ratio of any pair of coefficients of M̃ ∈ G{y} provided that this ratio does not 
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lie in F . We have the following result which is essential for our degree estimations and 
computation of the Lüroth generator:

Proposition 4. Let M ∈ F{x, y} be a differential polynomial in P \(P ∩F{x}){y} with the 
lowest rank in y and let M̃(y) ∈ G{y} be defined as in (4). Assume that M̃ ∈ F(t[�]){y}
for a suitable non-negative integer . Consider two generic points υ1, υ2 ∈ Qm(�+1). 
Let P (y) and Q(y) be the differential polynomials obtained from M̃(y) by substituting 
t[�] = υ1 and t[�] = υ2 respectively. Then P (t)/Q(t) is a Lüroth generator of G/F .

Proof. It follows in the same way as [3, Proposition 8] simply by changing the single 
variable u in [3] by the m variables t. �
Remark 5. Following the proof in [3, Proposition 8] it follows that, in order for υ1 and υ2

to produce a Lüroth generator, it suffices that Qj(υi) = 0 for j = 1, . . . , n and i = 1, 2, 
and that M̃(υ1, υ2) = 0.

4. Degree bounds

The aim of this section is to obtain an upper bound for the degrees of the numerator 
and the denominator of a Lüroth generator of G/F in terms of the syntactic parameters 
n, m, d and e associated to the given generators of the extension. For technical reasons 
we assume e ≥ 1.

4.1. Reduction to algebraic polynomial ideals

We start by estimating the order in the variables x = x1, . . . , xn and y = y1, . . . , ym
of a differential polynomial M(x, y) ∈ P \ (P ∩ F{x}){y} of minimal rank in y, where 
P is the prime differential ideal introduced in Section 3.2, namely, the kernel of the map 
in (3). In doing this, we will characterize P as a prime component of a finitely generated 
differential ideal with known generators, which will in term enable us to find such a 
polynomial M in an associated algebraic polynomial ideal.

First, note that the differential dimension of P equals m, since the fraction field of 
F{x, y}/P is isomorphic to F〈t〉, with t = t1, . . . , tm.

Consider the block elimination ranking in F{x, y} with x1 � x2 � · · · � xn � y, 
where the block y is given the orderly ranking with y1 < · · · < ym. Since P1(t)/Q1(t)
is differentially transcendental over F , the differential ideal P contains no differential 
polynomial involving only the variable x1. Then, the assumption that G/F has differential 
transcendence degree equal to 1 and the fact that the differential dimension of P is m
imply that a characteristic set of P for the considered ranking is of the form

C1(x1, x2), C2(x1, x2, x3), . . . , Cn−1(x1, . . . , xn), Cn(x1, . . . , xn,y).
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By [19, Lemma 19], there exists an irreducible characteristic set C1, C2, . . . , Cn of P
for this ranking (see [19, Section 4] for a definition) and, by the proof of [6, Theorem 27], 
it follows that the involved differential polynomials satisfy

ord(Ci) ≤ ord(P) for 1 ≤ i ≤ n.

Furthermore, the irreducibility of the characteristic set implies that Cn is a differential 
polynomial in P \(P ∩F{x}){y} with a minimal rank in y, that is, we can take M(x, y) =
Cn(x, y) and so,

ord(M) ≤ ord(P). (5)

In order to estimate the order of P, we introduce a system of differential polynomials 
that provides us with an alternative characterization of this prime differential ideal: 
denote

Fj := Qj(y)xj − Pj(y) ∈ F{x,y} for 1 ≤ j ≤ n.

Set F := F1, . . . , Fn and q := Q1 . . . Qn.
The following lemma is a straightforward generalization of [3, Lemmas 10 & 11] for 

the case m > 1; for this reason, we omit its proof.

Lemma 6. With the previous assumptions and notation, we have:

(a) The ideal P is the (unique) minimal prime differential ideal of [F ] which does not 
contain the product q; moreover, P = [F ] : q∞.

(b) The system F is quasi-regular at P.

For technical reasons (see Remark 8 below) we need also the following result:

Proposition 7. Let p ∈ N0 be an arbitrary non-negative integer. Then:

(a) The algebraic ideal (F, Ḟ , . . . , F (p)) : q∞ ⊂ F [x[p], y[p+e]] is prime.
(b) The localization of the ring F [x[p], y[p+e]]/(F, Ḟ , . . . , F (p)) by the powers of q can be 

embedded naturally in the fraction field of the differential domain F{x, y}/P.

Proof. The statement (a) follows from the fact that the ideal (F, Ḟ , . . . , F (p)) : q∞ ⊂
F [x[p], y[p+e]] is the kernel of the map

ψp : F [x[p],y[p+e]] → F [(Pj/Qj)[p]1≤j≤n , y[p+e]]

x
(k)
j �→ (Pj/Qj)(k)

y
(i) �→ y

(i)

.

h h
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In order to prove (b), let O be the ring F [x[p], y[p+e]]/(F, Ḟ , . . . , F (p)) localized by 
the powers of the single polynomial q. From (a) we infer that O is a domain. Moreover, 
by extending ψp and localizing in the powers of q, which is also a multiplicative set in 
F{x, y}/P, we obtain a natural ring morphism O → (F{x, y}/P)q. It suffices to show 
that this morphism is injective: let Q ⊂ O be the kernel of this morphism (which is 
also a prime ideal). Since the variables y are differentially independent modulo P, we 
conclude that the variables y[p+e] must be algebraically independent in O/Q. Hence, the 
Krull dimensions of the domains O and O/Q are equal to (m + 1)(p + e) (observe that 
each variable x(k)

j in O is algebraic over the variables y[p+e] for all j and k ≤ p). Hence 
Q = 0 and statement (b) is proved. �
Remark 8. Lemma 6(b) and Proposition 7(b) state that the conditions in [1, Definition 1]
and [1, Hypothesis in §2.4], respectively, are fulfilled by the system F with respect to 
the differential prime ideal P. Then, the definitions, methods and results of [1], based 
on the properties of the differentiation index, can be applied in our setting.

Now, we are able to estimate the order of the differential ideal P. In [3, Lemma 6] we 
have shown in an elementary way that for the case m = 1 the order of P is exactly the 
maximum of the orders of the generators Pj/Qj . In the general case m ≥ 1, with the 
help of Jacobi’s order bound, we are able to prove the following inequality, which will be 
enough for our purposes:

Lemma 9. Let e := max{ord(Pj(y)/Qj(y)) : 1 ≤ j ≤ n}. Then, ord(P) ≤ min{m, n}e.

Proof. The result is a consequence of Jacobi’s bound for the order of a prime differential 
ideal P associated to a quasi-regular system F (see [1, Theorem 18] or [14,15]). Let 
E := (εhk)1≤h≤n,1≤k≤n+m be the order matrix of the system F = F1, . . . , Fn, namely, 
the matrix where εhk := ordxk

(Fh) for 1 ≤ k ≤ n and εhk = ordyk−n
(Fh) for n +1 ≤ k ≤

n +m, where the order is set to be −∞ if the variable is not present in the polynomial. 
Then, Jacobi’s bound is as follows:

ord(P) ≤ max{
∑

1≤h≤n

εhτ(h) | τ : {1, . . . , n} → {1, . . . , n + m} is an injection}.

Since ordxh
(Fh) = 0, ordxi

(Fh) = −∞ if i = h, and ordyj
(Fh) ≤ e for every 1 ≤ j ≤ m, 

we have that, for every τ , 
∑

1≤h≤n εhτ(h) ≤ ne and 
∑

1≤h≤n εhτ(h) ≤ me. �
Combining the previous proposition with inequality (5) we conclude:

Corollary 10. There is a differential polynomial M ∈ P \ (P ∩F{x}){y} with the lowest 
rank in y such that ord(M) ≤ min{m, n}e.



JID:YJABR AID:16602 /FLA [m1L; v1.233; Prn:12/03/2018; 10:20] P.12 (1-24)
12 L. D’Alfonso et al. / Journal of Algebra ••• (••••) •••–•••
The above proposition implies that a polynomial M providing a Lüroth generator 
of G/F can be found in the algebraic ideal P ∩ F [x[ν], y[ν]] of the polynomial ring 
F [x[ν], y[ν]], where

ν := min{m,n}e.

The following result, which is an extension of Proposition 7 above, will allow us to 
work with a finitely generated algebraic ideal given by known generators. It can be viewed 
also as a suitable generalization of the results shown for the case m = 1 in [3, Lemma 14 
& Proposition 16]. The main tool to prove it is the estimation of the P-differentiation 
index of the system F := F1, . . . , Fn (see, for instance, [1, Section 3]). This invariant 
enables us to determine the number of differentiations of the system F that should be 
considered in order to obtain all the differential polynomials of pre-fixed order in the 
differential ideal.

Proposition 11. With the previous assumptions and notations the following equality of 
ideals holds:

P ∩ F [x[ν],y[ν]] = (F, Ḟ , . . . , F (ν)) : q∞ ∩ F [x[ν],y[ν]].

Proof. We start by estimating the P-differentiation index of the system F . For the sake 
of completeness we recall here the definition given in [1] of this invariant: for every k ∈ N, 
let Jk be the Jacobian submatrix of the polynomials F, . . . , F (k−1) with respect to the 
variables (x, y)(e), . . . , (x, y)(e+k−1). The P-differentiation index of F is the minimum 
k such that rank(Jk+1) − rank(Jk) = n holds, where the ranks are computed over the 
fraction field of F{x, y}/P.

We are going to prove that the P-differentiation index of the system F is at most e. 
In order to do this, by the previous definition, it suffices to show that rank(Je+1) −
rank(Je) = n. To this end, we analyze the structure of the matrices Je and Je+1.

Since the order of F in the variables x is zero, no derivative x(e)
j appears effectively 

in F, Ḟ , . . . , F (e−1). This implies that the columns of the Jacobian submatrix Je of this 
system corresponding to partial derivatives with respect to x(e) are null, that is,

Je =
(
0 J̃e

)
where 0 is the zero matrix of size ne × n. Moreover,

Je+1 =
(

0 J̃e 0
∂F (e)

∂x(e) ∗ ∂F (e)

∂(x,y)(2e)

)
.

On the other hand, since



JID:YJABR AID:16602 /FLA [m1L; v1.233; Prn:12/03/2018; 10:20] P.13 (1-24)
L. D’Alfonso et al. / Journal of Algebra ••• (••••) •••–••• 13
∂F
(k)
j

∂x
(l)
h

=

⎧⎨⎩ 0 if h = j or h = j, k < l(
k
l

)
Q

(k−l)
j if h = j, k ≥ l

,

the submatrix 
∂F (e)

∂x(e) has the diagonal structure

⎛⎜⎜⎜⎝
Q1(y) 0 · · · 0

0 Q2(y)
. . .

...
...

. . . . . . 0
0 · · · 0 Qn(y)

⎞⎟⎟⎟⎠ .

So, we deduce that rank(Je+1) = rank(Je) + n, as we wanted to prove.
Then, as a consequence of the main property of the differentiation index established 

in [1, Theorem 10], since ν ≥ e, we have that

[F ]P ∩ F [x[ν],y[ν]] = (F, Ḟ , . . . , F (ν))Pν+e
∩ F [x[ν],y[ν]], (6)

where Pν+e := P ∩ F [x[ν+e], y[ν+e]] and the subscripts denote the localizations in the 
complement of the prime ideals P and Pν+e, respectively.

Moreover, by Lemma 6 and [1, Proposition 3], the equality of ideals [F ]PF{x, y}P =
PPF{x, y}P holds; therefore,

[F ]P ∩ F [x[ν],y[ν]] = PP ∩ F [x[ν],y[ν]] = P ∩ F [x[ν],y[ν]].

In order to finish the proof, let us show that

(F, Ḟ , . . . , F (ν))Pν+e
∩ F [x[ν],y[ν]] = (F, Ḟ , . . . , F (ν)) : q∞ ∩ F [x[ν],y[ν]].

First note that (F, Ḟ , . . . , F (ν)) : q∞ ⊂ (F, Ḟ , . . . , F (ν))Pν+e
since q /∈ P. Conversely, if 

h ∈ (F, Ḟ , . . . , F (ν))Pν+e
∩ F [x[ν], y[ν]], there is a polynomial g ∈ F [x[ν+e], y[ν+e]] such 

that g /∈ P and gh ∈ (F, Ḟ , . . . , F (ν)); but g /∈ (F, Ḟ , . . . , F (ν)) : q∞, since otherwise, 
qNg ∈ (F, Ḟ , . . . , F (ν)) ⊂ P for some N ∈ N contradicting the fact that q /∈ P and g /∈ P. 
Since (F, Ḟ , . . . , F (ν)) : q∞ is a prime ideal, it follows that h ∈ (F, Ḟ , . . . , F (ν)) : q∞. �
4.2. A first degree bound

To get an upper bound for the degree of a Lüroth generator of G/F , we will estimate 
the degree of a polynomial M(x, y) ∈ P \ (P ∩ F{x}){y} with the properties stated in 
Section 3.2. In order to do this, by means of the results in the previous section, we relate 
M to an eliminating polynomial for an associated algebraic variety under a suitable 
linear projection.
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Most of the arguments we use in this subsection are mutatis mutandis the same ones 
applied in [3, Section 4.3] for the case m = 1. We repeat them here for the sake of 
comprehensiveness.

Notation 12. We denote with V ⊂ An(ν+1) × Am(ν+e+1) the affine variety defined as the 
Zariski closure of the solution set of the polynomial system

F = 0, Ḟ = 0, . . . , F (ν) = 0, q = 0,

where F = F1, . . . , Fn with Fj(x, y[e]) = Qj(y[e])xj − Pj(y[e]) for every 1 ≤ j ≤ n, 
q(y[e]) =

∏
1≤j≤n Qj(y[e]) and ν = min{m, n}e.

Note that V is an irreducible variety, since the algebraic ideal corresponding to V
is (F, Ḟ , . . . , F (ν)) : q∞ ⊂ F [x[ν], y[ν+e]], which is a prime ideal (see Proposition 7(a)). 
Moreover, since F, Ḟ , . . . , F (ν) is a reduced complete intersection in {q = 0}, the dimen-
sion of V is m(ν + e + 1).

Proposition 13. With the previous assumptions and notation, for a differential polynomial 
M(x, y) ∈ P \ (P ∩ F{x}){y} of minimal rank in y, we have that degy(M) ≤ deg(V).

Proof. Let ν0 ∈ N0 be the order of M in the variables y. By Corollary 10, we have that 
ν0 ≤ ν = min{m, n}e. Consider the fields

K := Frac(F [x[ν]]/(P ∩ F [x[ν]]))

and

L := Frac(F [x[ν],y[ν]]/(P ∩ F [x[ν],y[ν]])).

The minimality of the rank in y of M implies that {y[ν0−1]} ⊂ L is algebraically inde-
pendent over K. Furthermore, if

j0 := min
{

1 ≤ j ≤ m : {y(ν0)
1 , . . . , y

(ν0)
j } is algebraically dependent over K(y[ν0−1])

}
,

then M is the minimal polynomial of y0 := y
(ν0)
j0

∈ L over K(y[ν0−1], y(ν0)
1 , . . . , y(ν0)

j0−1).
Let X ⊂ {x[ν]} be a transcendence basis of K over F . Then, if we denote Y :=

{y[ν0−1], y(ν0)
1 , . . . , y(ν0)

j0−1} ⊂ L, we have that {X, Y } ⊂ L is algebraically independent 
over F and {X, Y, y0} ⊂ L is algebraically dependent over F . Moreover, if V is the affine 
variety introduced in Notation 12, since L ⊂ F(V) (see Proposition 11), the previous 
facts hold in F(V).

Consider the projection π : V → AN+1, π(x[ν], y[ν+e]) = (X, Y, y0), where N is 
the cardinality of {X, Y }. Since V is an irreducible variety and {X, Y } is algebraically 
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independent in F(V), the Zariski closure of π(V) is a hypersurface in AN+1; then, it is 
definable by an irreducible polynomial M0 ∈ F [X, Y, y0] such that

deg(M0) ≤ deg(V) (7)

(see [8, Lemma 2]).
We have that M is the minimal polynomial of y0 over K(Y ), whereas M0 is the 

minimal polynomial of y0 over F(X, Y ) ⊂ K(Y ), and we may assume that M and M0 are 
polynomials with coefficients in F having content 1 in K[Y ] and F [X, Y ] respectively. 
We infer that M divides M0 in K[Y ][y0] and, therefore, degy(M) = degY,y0

(M) ≤
degY,y0

(M0). The proposition follows from inequality (7). �
Recalling that a Lüroth generator v of G/F can be obtained as the quotient of two 

specializations of the variables x and their derivatives in the polynomial M (see Propo-
sition 4) and that two arbitrary generators are related by an homographic map with 
coefficients in F (see [12, §1], [18, Chapter II, §44]), we conclude:

Corollary 14. The degrees of the numerator and the denominator of any Lüroth generator 
of G/F are bounded by the degree of the variety V introduced in Notation 12.

Now, by applying Bézout’s theorem (see for instance [8, Theorem 1]) to obtain an 
upper bound for deg(V), we can exhibit an upper bound for the degrees of the numerator 
and the denominator of a Lüroth generator v = P (t)/Q(t) of G/F in terms of the 
number m of differential indeterminates t, the number n of given generators for G/F , 
their maximum order e, and an upper bound d for the degrees of their numerators and 
denominators.

Recall that V is an irreducible component of the algebraic set defined by the (ν + 1)n
polynomials F, Ḟ , . . . , F (ν), where F = F1, . . . , Fn with Fj(x, y) = Qj(y)xj −Pj(y)) and 
ν = min{m, n}e. If, for every 1 ≤ j ≤ n, dj is an upper bound for the degrees of Pj

and Qj , we have that deg(F (l)
j ) ≤ dj + 1 for every l, and we obtain the bound:

∏
1≤j≤n

(dj + 1)(min{m,n}e+1).

Summarizing:

Proposition 15. Let F be an ordinary differential field of characteristic 0, t = t1, . . . , tm
differentially transcendental over F , and

G = F〈P1(t)/Q1(t), . . . , Pn(t)/Qn(t)〉

a differential field extension of F of differential transcendence degree 1. Assume that 
Pj , Qj ∈ F{t} are relatively prime differential polynomials of total degrees bounded by dj. 
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Let e := max{ord(Pj/Qj) : 1 ≤ j ≤ n} ≥ 1. Then, any Lüroth generator of G/F can be 
written as the quotient of two relatively prime differential polynomials P (t), Q(t) ∈ F{t}
with total degrees bounded by 

∏
1≤j≤n(dj + 1)(min{m,n}e+1).

4.3. Refined degree bounds

We present here refined degree bounds for the differential Lüroth generator. To obtain 
these bounds, we follow the approach in [4]. The strategy consists in reducing the problem 
to the case of a field with two given generators by means of the primitive element theorem 
for differential field extensions in order to apply the bounds of Proposition 15 in this 
setting.

For j = 1, . . . , n, let αj := Pj(t)/Qj(t) with Pj , Qj ∈ F{t} relatively prime differential 
polynomials of degrees bounded by d.

Let

e = max
j

{ord(αj)} ≥ 1

μ = min
i,j

{ord(αj , ti) : ti appears in αj} ≥ 0.

Without loss of generality suppose that μ = ord(α1, t1). We consider the intermediate 
field F1 := F〈α1〉, so that

F ↪→ F1 = F〈α1〉 ↪→ G = F1〈α2, . . . , αn〉.

Since the differential transcendence degree of G/F equals 1 and we are assuming that 
α1 /∈ F , it follows that G/F1 is differentially algebraic, and F1 has nonconstant elements. 
By the primitive element theorem for differential field extensions (see [20, Theorem 1]), 
there is an element β ∈ G such that

β =
n∑

j=2
cjαj and G = F1〈β〉 = F〈α1, β〉,

where the coefficients cj can be taken as generic elements of F1 = F〈α1〉 for j = 2, . . . , n.
Note that such an element β can be represented as β = P̂ (t)/Q̂(t) for two relatively 

prime polynomials P̂ (t) and Q̂(t) in F{t}. In order to apply the results of the previous 
section, we estimate the degrees of these polynomials for a suitably chosen primitive 
element β.

Proposition 16. With the above assumptions and notations,

(a) if the field F contains a nonconstant element, then β can be taken as the ratio of 
two relatively prime polynomials P̂ (t) and Q̂(t) in F{t} with degrees bounded by 
(n − 1)d;
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(b) if F is a field of constants, then β can be taken as the ratio of two relatively prime 
polynomials P̂ (t) and Q̂(t) in F{t} with degrees bounded by (n + μ − 1)d.

Proof. From the proof of [20, Theorem 1] (see also [2, Theorem 29]) it follows that, if 
ζ ∈ F1 is a nonconstant element, the coefficients cj ∈ F1, with j = 2, . . . , n, in the 
definition of β can be taken to be polynomials in ζ with rational coefficients.

Then, in the case that F contains a nonconstant element, c2, . . . , cn can actually be 
taken in F and so, the bound in (a) is a direct consequence of the fact that αj = Pj/Qj

and deg(Pj), deg(Qj) ≤ d, for j = 2, . . . , n.
Suppose now that F is a field of constants. Since α1 ∈ F1 is a nonconstant ele-

ment, then c2, . . . , cn can be chosen in the polynomial ring Q[α1]. Moreover, if Q is the 
prime differential ideal of F〈α1〉{x2, . . . , xn} such that F〈α1〉〈α2, . . . , αn〉 is the frac-
tion field of F〈α1〉{x2, . . . , xn}/Q, then by [2, Proposition 30] and the arguments in 
[18, Chapter II, Section 22], ord(Q) is the algebraic transcendence degree of the field 
G := F〈α1, α2, . . . , αn〉 over F〈α1〉 and, for j = 2, . . . , n, the element cj can be taken to 
be a polynomial in Q[α1] with degα1

(cj) ≤ ord(Q). Then, if we obtain a bound for the 
order of Q, we also have a bound for the degrees of c2, . . . , cn and, therefore, a bound 
for the degrees of a numerator and a denominator of β.

Let v0 ∈ G be a Lüroth generator of G over F . Thus, there exists a univariate reduced 
rational differential function Θ = Θ1/Θ2 with Θ1, Θ2 ∈ F{T} such that α1 = Θ(v0). 
Then, Θ2(T )α1 − Θ1(T ) ∈ F1{T} is a non-zero differential polynomial vanishing at v0
and, therefore, the transcendence degree of G = F1〈v0〉 over F1 is ord(Θ). It is easy to 
see that this order is bounded by min{ord(α1, ti) : ti appears in α1} and, therefore, by μ

(see for instance the proof of [3, Proposition 5]). So, degα1
(cj) ≤ ord(Q) ≤ μ.

Thus, for j = 2, . . . , n, regarding cj as an element of F〈t〉, we have that it can be 
written as the ratio of a polynomial of degree bounded by dμ and Q1(t) raised to a 
power bounded by μ. From these bounds we deduce that β = c2α2 + . . . + cnαn can be 
represented as P̂ (t)/Q̂(t) with

deg(P̂ (t)),deg(Q̂(t)) ≤ dμ + d(n− 1) = d(n + μ− 1).

This finishes the proof of the Proposition. �
As a consequence of the previous proposition, we have that

G = F〈α1, β〉 where α1 = P1(t)/Q1(t) and β = P̂ (t)/Q̂(t)

with P1(t), Q1(t) and P̂ (t), Q̂(t) two pairs of relatively prime polynomials in F{t} of 
maximal order e ≥ 1 and bounded degrees. Applying the bound from Proposition 15 in 
this setting, we deduce the following result:

Theorem 17. Let F be an ordinary differential field of characteristic 0, t = t1, . . . , tm
differentially transcendental over F , and
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G = F〈P1(t)/Q1(t), . . . , Pn(t)/Qn(t)〉

a differential field extension of F of differential transcendence degree 1. Assume that 
Pj , Qj ∈ F{t} are relatively prime differential polynomials of degrees bounded by d. 
Let e = maxj{ord(αj)} ≥ 1 and μ = mini,j{ord(αj , ti) : ti appears in αj}. Then, any 
Lüroth generator of G/F can be written as the quotient of two relatively prime differential 
polynomials P (t), Q(t) ∈ F{t} with total degrees bounded by

min
{(

(d + 1)
(
(n + μ− 1)d + 1

))min{m,2}e+1
, (d + 1)n(min{m,n}e+1)}.

Moreover, if F is a differential field containing a nonconstant element, then the total 
degrees of P (t) and Q(t) are bounded by

min
{(

(d + 1)((n− 1)d + 1)
)min{m,2}e+1

, (d + 1)n(min{m,n}e+1)}.
For the case m = 1 we deduce the following bounds:

Corollary 18. If m = 1, an upper bound for the degree of the numerator and the denom-
inator of a Lüroth generator is

min
{(

(d + 1)
(
(n + μ− 1)d + 1

))e+1
, (d + 1)n(e+1)}.

Moreover, if F contains a nonconstant element, the bound ((d + 1)((n − 1)d + 1))e+1

holds.

Proof. It is a direct consequence of Theorem 17. We observe that for the case where the 
differential field F contains a nonconstant element (or for the case μ = 0) the inequality 
((d + 1)((n − 1)d + 1))e+1 ≤ (d + 1)n(e+1) holds. �
4.4. Comparisons with other degree upper bounds for m = 1

For the case m = 1, i.e. when t is a single variable t, two previous works addressed 
the computation of upper bounds for the degree of a Lüroth generator. In [3, Theorem 1]
the upper bound

min
{
(nd(e + 1) + 1)2e+1 , (d + 1)n(e+1)} (8)

is given (for any ground differential field F of characteristic 0). Later, in [4] the authors 
show the degree upper bounds

(d(n + e− 1) + 1)2e+2 (9)

and
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(�n/2� d + 1)2e+2, (10)

the second one if F contains a nonconstant element.
It is easy to see that the inequality

(
(d + 1)

(
(n + μ− 1)d + 1

))e+1
< (d(n + e− 1) + 1)2e+2

holds. Also, we have that

(
(d + 1)((n− 1)d + 1)

)e+1 ≤ (�n/2� d + 1)2e+2

with equality only for n = 2. Hence, the bounds stated in Corollary 18 improve (9)
and (10).

On the other hand, the expression δ1 = (nd(e +1) +1)2e+1 in (8) may be smaller than 
our new bound τ1 = ((d +1)

(
(n +μ −1)d +1

)
)e+1 when d is sufficiently large with respect 

to the other parameters, but otherwise τ1 seems to be more accurate. For instance, taking 
d = 100, n = 3 and e = μ = 1, we have δ1 = 217081801, τ1 = 924220801 and the ratio 
δ1/τ1 ≈ 0.23488; but if we put n = 20 instead of 3, we obtain δ1 = 64048012001, 
τ1 = 40844814201 and δ1/τ1 ≈ 1.5681.

Summarizing, our bounds improve the known ones except if the degree d is large 
with respect to the other parameters. In any case, we have the following improvement 
of Corollary 18 which includes the bounds given in [3] and [4]:

Corollary 19. With the notations above, in the case m = 1, the total degree of a Lüroth 
generator is bounded by

min{((d + 1)
(
(n + μ− 1)d + 1

)
)e+1 , (nd(e + 1) + 1)2e+1 , (d + 1)(e+1)n}.

Moreover, if the base field F contains a nonconstant element, this bound can be replaced 
by min{

(
(d + 1)((n − 1)d + 1)

)e+1
, (nd(e + 1) + 1)2e+1}.

5. Algorithmic aspects

Complementing the discussion of quantitative aspects on Lüroth generators developed 
in the previous sections, here we present an algorithmic procedure to solve the following 
problem:

Given a differentially finitely generated subextension G/F of F〈t〉/F , decide if a Lüroth 
generator for this extension exists and in the affirmative case compute it.

We start exhibiting an effective method to decide if an arbitrary differentially finitely 
generated subfield G of F〈t〉/F has differential transcendence degree 1 over F . Then, we 
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describe a Gröbner-based algorithm for the computation of a Lüroth generator of such 
extensions from a given set of differential rational functions generating G/F .

Even if these procedures are completely independent of the previous estimations for 
the degree of a Lüroth generator, their correctness is a consequence of the arguments 
developed in the preceding sections.

5.1. Testing differential transcendence degree one

Let G = F〈α1, . . . , αn〉 be a differential subextension of F〈t〉/F , where t := t1, . . . , tm
are differential indeterminates over F . Assume each αj is represented as a quotient Pj/Qj

of relatively prime differential polynomials in F{t} of order at most e ≥ 1.
In order to avoid new notations we keep those introduced in the previous sections, 

even if the context is slightly different here, because now the field extension G/F is not 
assumed to be of differential transcendence degree 1.

Without loss of generality suppose that no αj belongs to the field F . In particular 
the extension F〈α1〉 has differential transcendence degree 1 over F . Then, we have that 
G/F has differential transcendence degree 1 over F if and only if, for every j = 2, . . . , n, 
αj is differentially algebraic over F〈α1〉.

As in Section 3.2, we consider the morphism ψ : F{x, y} → F{α1, . . . , αn, t} (defined 
in (3)) and denote its kernel by P. The differential dimension of P is m, since the fraction 
field of the image of ψ is F〈t〉.

Take an index j, 2 ≤ j ≤ n, such that αj is differentially algebraic over F〈α1〉 and con-
sider the block-elimination ranking in F{x, y}: x1 � xj � x2 � · · · � xn � y, where 
in the block y is given the orderly ranking with y1 < · · · < ym. Then, our assumption 
on αj implies that any characteristic set of P for this ranking must contain a differential 
polynomial C(x1, xj) and by [19, Lemma 19] and the proof of [6, Theorem 27] we may 
suppose that C is irreducible and its total order is bounded by the order of the ideal P. 
Moreover, since Lemmas 6 and 9 are independent of the differential transcendence degree 
of G over F , we infer that the inequality ord(P) ≤ ν = min{m, n}e holds.

In this way, we transform a differential problem in an algebraic one. More precisely, 
we have:

Proposition 20. The fraction αj is differentially algebraic over F〈α1〉 if and only if the 
set {α[ν]

1 , α[ν]
j } is algebraically dependent over F as a subset of the algebraic rational 

field F(t[ν+e]).

This proposition allows us to apply a classical result from algebraic geometry which 
states that a finite set in a field of rational functions L with coefficients in a field K
is algebraically independent over K if and only if their gradient vectors are linearly 
independent over L (see for instance [9, Ch. 7, Th. III, p. 135]).

Hence, we have the following effective criterion to decide if the extension G/F has 
differential transcendence degree 1:
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Theorem 21. The differential field extension G/F has differential transcendence degree 1 
if and only if for all index j, with 2 ≤ j ≤ n, the rank over F(t[ν+e]) of the 2(ν + 1) ×
m(ν + e + 1) Jacobian matrix ⎛⎜⎜⎜⎜⎝

∂α
[ν]
1

∂t[ν+e]

∂α
[ν]
j

∂t[ν+e]

⎞⎟⎟⎟⎟⎠
is strictly smaller than 2(ν + 1).

5.2. Computation of the Lüroth generator

Here we describe a probabilistic algorithmic procedure to compute a Lüroth gener-
ator of a finitely generated differential subextension G/F of F〈t〉/F with differential 
transcendence degree 1, working over a polynomial ring in finitely many variables.

In order to achieve this, we combine the characterization of a Lüroth generator given 
in Section 3.2 and the results from Section 4.1 that enable us to translate a problem 
involving differential ideals into a problem concerning polynomial ideals with finitely 
many known generators.

Keeping our previous notations, if G = F〈P1(t)/Q1(t), . . . , Pn(t)/Qn(t)〉, let Fj =
Qj(y)xj − Pj(y) for j = 1, . . . , n, and F = F1, . . . , Fn.

First, we compute a polynomial M(x, y) ∈ P \ (P ∩ F{x}){y} with minimal rank 
in y for an orderly ranking in the variables y: following Proposition 11, consider the 
polynomial ideal (F, Ḟ , . . . , F (ν)) : q∞ ⊂ F [x[ν], y[ν+e]]. Compute a Gröbner basis G of 
this ideal for a product monomial order in F [x[ν], y[ν+e]] such that

• x < ẋ < · · · < x(ν) < y < ẏ < · · · < y(ν+e),
• each group of variables x(k), for k = 0, . . . , ν, and y(l), for l = 0, . . . , ν + e, is given 

the graded lexicographic order.

The smallest polynomial in G which contains at least one variable in y[ν+e] is a polyno-
mial M satisfying the required conditions.

Then, we choose at random two specialization points υ1 and υ2 in Qm(ν+e+1) for 
the variables t[ν+e] in the polynomial M̃ introduced in (4) and compute τl,j,k :=
(Pj/Qj)(k)(υl) for j = 1, . . . , n, k = 0, . . . , ν, and l = 1, 2. If τ1 := (τ1,j,k) and 
τ2 := (τ2,j,k), we obtain the polynomials P (y) = M(τ1, y) and Q(y) = M(τ2, y).

Finally, we take v = P (t)/Q(t). By Proposition 4 and Remark 5, if υ1 and υ2 lie 
outside the zero set of a known polynomial, the differential rational function v is a 
Lüroth generator of G/F .

We point out that, even if the algorithm is easy to describe, the rapid increase of the 
number of variables and the degrees of the algebraic ideals involved, together with the 
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fact that a specific elimination monomial ordering must be considered seem to be major 
constraints to obtain an output within a reasonable time for inputs of moderate size.

5.3. Example

Let F be a differential field of characteristic 0 and {t1, t2} differential indeterminates 
over F .

Example. Let G = F〈ṫ1t2 + t1ṫ2, t21t
2
2〉. Here, we have:

• e = 1, n = 2, m = 2,
• α1 = ṫ1t2 + t1ṫ2, α2 = t21t

2
2.

First, we check whether the differential transcendence degree of G/F equals 1 applying 
Theorem 21. In this case, ν = min{n, m}e = 2 and so, we consider the Jacobian matrix 
of {α1, α̇1, α

(2)
1 , α2, α̇2, α

(2)
2 } with respect to {t1, t2, ṫ1, ṫ2, t(2)1 , t(2)2 , t(3)1 , t(3)2 }:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ṫ2 ṫ1 t2 t1 0 0 0 0
t
(2)
2 t

(2)
1 2ṫ2 2ṫ1 t2 t1 0 0

t
(3)
2 t

(3)
1 3t(2)2 3t(2)1 3ṫ2 3ṫ1 t2 t1

2t1t22 2t21t2 0 0 0 0 0 0
2ṫ1t22 + 4t1ṫ2t2 4ṫ1t1t2 + 2t21ṫ2 2t1t22 2t21t2 0 0 0 0

∂α
(2)
2
t1

∂α
(2)
2
t2

4ṫ1t22 + 8t1ṫ2t2 8ṫ1t1t2 + 4t21ṫ2 2t1t22 2t21t2 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where 
∂α

(2)
2
t1

= 2t(2)1 t22+8ṫ1ṫ2t2+4t1t(2)2 t2+4t1ṫ22 and 
∂α

(2)
2
t2

= 4t(2)1 t1t2+4ṫ21t2+8ṫ1t1ṫ2+

2t21t
(2)
2 . Since the rank of this matrix is 4, which is smaller than 2(ν+1) = 6, we conclude 

that the differential transcendence degree of G/F equals 1.
In order to obtain a Lüroth generator, let

F1 = x1 − ẏ1y2 − y1ẏ2, F2 = x2 − y2
1y

2
2

and, following Section 5.2, consider the algebraic polynomial ideal

(F1, F2, Ḟ1, Ḟ2, F
(2)
1 , F

(2)
2 )

= (x1 − ẏ1y2 − y1ẏ2, x2 − y2
1y

2
2 , ẋ1 − y

(2)
1 y2 − 2ẏ1ẏ2 − y1y

(2)
2 , ẋ2 − 2ẏ1y1y

2
2 − 2y2

1 ẏ2y2,

x
(2)
1 − y

(3)
1 y2 − 3y(2)

1 ẏ2 − 3ẏ1y
(2)
2 − y1y

(3)
2 ,

x
(2)
2 − 2y(2)

1 y1y
2
2 − 2ẏ2

1y
2
2 − 8ẏ1y1ẏ2y2 − 2y2

1y
(2)
2 y2 − 2y2

1 ẏ
2
2)

A differential polynomial M(x, y) providing a Lüroth generator can be found in this 
polynomial ideal:
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M(x,y) = M(x1, ẋ2, y1, y2) = ẋ2 − 2x1y1y2.

Now, we choose two specialization points for (t1, t2, ṫ1, ṫ2, t(2)1 , t(2)2 ), for instance, υ1 =
(1, 1, 1, 0, 0, 0) and υ2 = (2, 1, 0, 1, 0, 0), compute the corresponding specialization values 
for (x1, ẋ2), namely, (1, 1) and (2, 4), respectively, and obtain:

• P (y1, y2) = M(1, 1, y1, y2) = 1 − 2y1y2,
• Q(y1, y2) = M(2, 4, y1, y2) = 4 − 4y1y2

and, as a consequence of Proposition 4, the Lüroth generator

v = P (t1, t2)
Q(t1,2 ) = 1 − 2t1t2

4 − 4t1t2
.

Note that this implies that t1t2 is also a Lüroth generator of the extension.
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